Címke: vasfoszfát

A rozsdásodás

A Wikipédiában nagyon szépen le van írva, hogy mit nevezünk rozsdának, rozsdásodásnak. Nekünk az egyik fő feladatunk, hogy ezt a folyamatot a lehető legkisebb mértékre, vagy teljesen nullára csökkentsük. rozsda-korlat2

Nemrég Magyarország egyik legjobb fürdőjében jártam.

Nagyon élveztem a fürdőzést, pihenést, de van pár dolog, ami mellett nem tudtam elmenni, és megerősített abban, hogy ismereteimet tovább fejlesszem. rozsda-szeprozsda-fogasTörtént ugyanis, hogy nem tudtam nem észrevenni a fürdőben a rozsdafoltokat, illetve a korlát kopását. Hogy ezeket mi okozza? Egyszerű tervezési hiba. A nagyon párás környezet a hibás, illetve a korlát esetében az emberi kéz savassága. Egy high-tech technológiával felszerelt fürdőben ez elég irracionálisan néz ki. Általában a végtermék árának 10 %-a a felületkezelési költség. Amennyiben ez a 10 % nem megfelelő, akkor a komplett termék értékét akár a felére, vagy még lejjebb is csökkentheti. Számolja ki, hogy amennyiben felületkezelési tervezési szakértőhöz fordul a 10 %-hoz mennyi adódik hozzá költségként. Tapasztalataink alapján 0,1-0,5 %. A reális összehasonlításhoz a másik oldal, hogy egy esetleges rozsdásodás akár 50 %-ba kerül a termék értékéhez képest, nem beszélve a cég jó hírnevéről.

 

Amennyiben szeretné a fenti képeken látható helyzeteket elkerülni már a felületkezelés tervezésekor kérje szakértőink tanácsát!

Előkezelés: mártásos vagy szórásos?

A két legelterjedtebb előkezelési forma a mártásos vegyi, vagy a szórásos vegyi előkezelés. Mindkettőnek előnye és hátránya is van, ezt vizsgáljuk most meg.

sesz_n01A szórásos előkezelés nagy előnye, hogy a kezelendő tárgyat mechanikai hatás is éri. Ez azt jelenti, hogy a tárgyon lévő szennyeződést nyomás hatására is eltávolodik. Gondoljunk csak bele, ha otthon mossuk a kocsit egy slaggal (a vége csupasz), akkor az autónkon lévő szennyeződést benedvesítjük. Ha befogjuk a slag végét, úgy, hogy az ujjunk mellet jöjjön a víz, megnő a nyomás, és ezáltal a szennyeződések nagy részét le tudjuk veretni az autónkról. Itt is ugyanez a helyzet áll fent. Általában automatizált vonszoló pálya és szórókoszorúk segítségével automatizálható. Hátránya, hogy, amikor az előkezelő alagútban van a nagyon alakos munkadarab, akkor nem mindenhol éri megfelelően a vegyszer, illetve a víz. Ahol sík lemezek előkezelése, vagy ahhoz hasonló munkadarabok előkezelése folyik gazdaságosabb, mint a mártásos eljárás. Általában a azonos pályán van, mint a festékszóró kabin.

IMG_2006A mártásos eljárás, amikor kádakba egy daru segítségével bele mártjuk a munkadarabot. Itt nem éri mechanikai hatás, viszont biztosan bejut mindenhova a vegyszer, vagy a víz. Ez nagyon nagy előny egy alakos munkadarabnál. Hátránya, hogy a vegyszereket jóval erősebbre kell beállítani. A legtöbb esetben nincsen egy pályán a festőkabinnal, tehát előkezelés után a darabokat át kell akasztani. Ez a hatékonyság romlását eredményezheti, és sokkal komolyabb logisztikai kihívás.    

Esztétika II: nyers felület előkészítése porfestéshez

poros felületTöbbször előfordul, hogy festés után látszódnak különböző mechanikai sérülések, amik megmunkálás során keletkeztek, de legtöbbször szinte észrevehetetlen.

Ezek nagyon könnyen megelőzhetek, ha betartjuk az alábbi szabályokat.

A nyers felület legyen…

  • egyenletes

csiszolás +PEMRétegvastagság mérővel mérhető nyers felületek átmérése esetén a tűréshatár ± 4 μm. Amennyiben festés előtti érték túllépi a megengedett határértéket a festés után mért rétegvastagság nem lesz megbízható.

  • mechanikai sérülésektől (karcok, benyomódások stb.) és sorjától mentes.

Festés után fokozottan látszódnak ezek a hibák.

  • rozsdamentes

nyers rozsdás felületRozsdás, oxidált alkatrészeken a porfestésnek nem megfelelő a tapadása, ami a festék későbbi leválásához vezet. A korrózió elkerülhető a zárt, száraz helyen történő tárolással, az alkatrészek szilikonmentes korróziógátló olajjal történő bevonásával, szöszmentes kesztyűben történő mozgatással.

  • szilikon és szilikon származék mentes

Ezeket az anyagokat a porfestés előtt lehetetlen felismerni, és csak a beégetés után derül ki hogy az alapanyag szilikon szennyezett volt. A felületen lévő szilikon származékokat az előkezelős sor nem tudja eltávolítani, ennek következtében a felületen a festék kráteresedni fog. Szilikon nem csak a gyártásban használt kenőanyagok során kerülhet fel a felületre, hanem egyszerű – dolgozók által használt – kézkrémekkel is. 

  • szennyeződésektől mentes

A szennyeződések egy része hőhatás következtében leválik vagy gázosodni kezd, melyek felületi hibákat eredményeznek a festett felületen.

  • feliratoktól és ragasztóanyagoktól/címkéktől mentes

Ezeket a feliratokat érdemes eltávolítani, mert az előkezelő mosók többsége nem viszi le a felületről. Ilyenek a különböző ragasztó anyagok, etikettek.

  • zsír- és olajmentes furatok, menetek

A zsír és olajmaradványok a beégetés során cseppfolyóssá illetve gőz halmazállapotúvá válnak, a belső üregekben elkezdenek cirkulálni és a réseken illetve a hegesztési varratok zárványain keresztül nagy nyomással a külső felületre kerülnek és megakadályozzák a festék megfelelő tapadását, esztétikáját.

Lézervágott felület

 Nagyon fontos, hogy a lézervágás nitrogénes technológiával történjen. Más technológia alkalmazásával történő lézervágás esetén a lézervágott részen oxidált felület keletkezik. Ezeken a felületeken, éleken az oxidáció miatt a festék tapadása nem megfelelő.

Préselt csapok, csavarok és lemez visszahajtásokfestett kiforrt a furat mellett

Fontos, hogy a préseléssel rögzített csapok csavarok rögzítési felületénél ne maradjon zsír vagy olajszármazék, mert ez a beégetés során tapadási problémát okozhat.

Szintén hiba forrása lehet a lemezalkatrészek esetében a visszaperemezés, amennyiben a visszaperemezésnél a két lemez távolsága nem éri el a 2 mm távolságot.

Horganyzott alkatrészek

A horganyzás során keletkezett felületi egyenetlenségeket, megfolyásokat, zárványokat a festés előtt el kell távolítani, mert esztétikai nem megfelelősséghez vezethet.

A jobb festéktapadás és a kigázosodási lehetőség csökkentése érdekében a festés előtt célszerű az alkatrészeket homokszórással „megködölni“ vagy átcsiszolni.

Forrasztás, hegesztésnyers hegesztés

Forrasztás és hegesztés esetén a felületen üvegszerű bevonat keletkezik, amit el kell távolítani. A forrasztás során a hő hatására az alkatrészen található olaj és zsír maradványok elégnek és korom és oxidáció jelentkezik.

Ezeket a nem kívánatos melléktermékeket szintén maradvány mentesen el kell távolítani a festendő felületről. Lágyforrasztás esetén a beégetési hőmérséklet (180-200°C) hatására a forrasztóanyag kiolvadhat.

Öntvények

Minden öntvény alkatrészből gáz szabadul fel a beégetés során, ami hólyagosodást okoz a festett felületen valamint az öntvény anyagában is. A magas beégetési hőmérséklet kedvező a lunkerek erősödésének. Az öntvény felületét érdemes az előkészítés során simára csiszolni, ezt követően homokszórással a csiszolóanyagokat eltávolítani.

Intenzíven tapadás gátlóval kezelt öntvényformából visszamaradt tapadás gátló negatívan hat a festés minőségére.

Ajánlásunk a csiszoló anyagokra szemcseméretére vonatkozóan.csiszoló papír (5)

Gépi csiszolás: minimum P100; P120

Kézi csiszolópapír: minimum P220

Érdemes minden esetben festés előtt egy próbát készíteni, hogy mi az a minimum csiszoló szemcseméret, ami még hatékony, és nem okoz esztétikai problémát festés után.

Esztétika

felületen kicsiEgy nagyon érdekes fogalom. Minden embernél szubjektív. Ami nekem tetszik, nem biztos, hogy tetszik másnak, ami nekem nem tetszik, lehet, hogy másnak igen.

Ez a felületkezelő iparban több problémát is felvet, azonban mindegyik megelőzhető, vagy minimalizálható, olyan minták és dokumentumok készítésével, amivel mindkét fél egyetért.

Pl.: az üzemek többségében nincsen levegő szűrés, ami azt jelenti, hogy a levegőben szálló por beleéghet a frissen festett munkadarabba. Ez tud okozni olyan hibákat, ami az esztétika rovására megy.

De hogyan tudjuk ezt megelőzni, mi kell, hogy elkerüljük a hibákat:

          képességaudit

          dokumentáció létrehozása

          határminták

Ha ez a három alapvető dolog közül bármelyik is hiányzik nem megfelelőség lesz a következmény.

Cégünk mindhárom dologban tud segíteni.

képességKépességaudit: szakembereink kielemzik az adott cég képességeit, és javaslatot tesznek arra, hogy az adott termék felületkezelésére alkalmas-e.

 

dokumentáció2Dokumentáció létrehozása: teljes átvételi dokumentációt hozunk létre, amiben szabályozzuk, keretek közé szorítjuk az esztétikát, mint kifejezést.

 

határmintaHatárminták: segítünk határmintákat létrehozni. Modellezzük a hibákat, kioktatjuk a dolgozókat, inspektorokat. Az oktatási rendszert hozunk létre, amivel az új belépők oktatása egyszerűbbé, könnyebbé válik.

 

Amit vállalunk

untitledEgyedi szolgáltatásunk keretében a helyszínen tudjuk vállalni a termékek festés technológiájának kidolgozását. A konkrét termékre vonatkozóan a fizikai munkán át (festésen) a teljes fényképes, videós és papír alapú dokumentáció létrehozását. Teljes mértékben igazodunk az igényekhez, legtöbbször hétvégén, illetve éjszaka dolgozunk, ezzel is biztosítva az üzem folyamatos termelését.

Automation concept. Isolated on white

Komplett festő technológiák kidolgozását is vállaljuk, segítünk a megfelelő alvállalkozó, beszállító auditálásában, kiválasztásában.

Ha szükséges hosszú távra is tudunk festőt, festő technológust biztosítani.

Mindenben segítünk, keressen bátran!

Előkezelés: foszfátozás + passziválás

cink-foszfatozas2

Lássuk a tankönyvi anyagot a foszfátozásról, lentebb pedig a hétköznapi ipari felhasználásban mit is jelent ez.

Foszfátozáskor a fém felületén – a foszfátozó oldat összetételétől függően – vas-, cink- cink-kalcium- vagy mangántartalmú kristályokból és/vagy elegykristályokból álló foszfátréteg alakul ki. Viszonylag új eljárás a szerves oldószeres foszfátozás, amelynél az eljárás után a vékony vas és cink-foszfát réteget még szerves polimer film is borítja.

A munkadarabok alapanyaga rendszerint vas, szénacél vagy gyengén ötvözött acél, de lehet alumínium, cink és ötvözetei is.

A foszfátozás alkalmazásának fontosabb területei:

  • korrózió elleni védelem (zsírokkal, olajokkal kombinálva),
  • közbenső réteg, a szerves (festék vagy műanyag) bevonatok tapadásának és korrózióállóságának növelésére,
  • felületi súrlódások csökkentése hidegalakítási műveletekhez,
  • kopás csökkentése egymáson csúszó gépalkatrészeknél,
  • elektromos szigetelés stb.

A foszfátozási művelet történhet bemerítéssel, szórással vagy ritkán ecseteléssel.

Valamennyi foszfátréteg képződését, szerkezetét és tulajdonságait számos tényező befolyásolja, amelyek között a legfontosabbak:

  • az alapfém minősége, felületi érdessége,
  • a felületelőkészítés módja,
  • az öblítési körülmények,
  • a foszfátozás műveleti feltételei (az alkotók koncentrációja un. pontszáma, hőmérséklet, kezelési idő, stb.).

A megfelelő minőségű bevonat kialakításához a munkadarab kifogástalan zsírtalanítása, oxidmentesítése valamint alapos vizes öblítés, egyes esetekben aktiválás szükséges.

7.1.VASFOSZFÁTOZÁS

Vas-foszfát rétegeket elsősorban vason, acélon állítanak elő. Az eljárás a nem rétegképző foszfátozáshoz tartozik.

Fő felhasználási területe a lakkok és festékek, elsősorban az elektroforetikus valamint elektrosztatikus festési eljárásoknál a felhordása előtt, mivel a rétegek elektromos ellenállása kicsi.

A vas-foszfát-réteg nagyon finom kristályokból áll, a rétegvastagsága 1 m alatti, kékeszöld színű, részben pedig szivárványszínben játszik. Növekvő rétegtömeggel a felület mattabbá és szürkébbé válik.

A vas-foszfát rétegeknek a tömegtől függően két csoportja ismeretes: 0,2 – 0,6 g/m2-es és 0,6 -1,2 g/m2-es.

7.2. CINKFOSZFÁTOZÁS

A cinkfoszfátozás során olyan vizes oldatokat használnak, amelyek cink-dihidrogén-foszfátot tartalmaznak és főként acél, cink valamint alumínium alapfémek felületkezelésére alkalmasak.

A cink-foszfát rétegek matt szürkés-sötétszürkés színűek, jó szigetelő tulajdonságúak. A kristályokkal borított fémfelület kb. 5-6-szorosa a sima felületnek.

A korrózióállóság növelésére szükség lehet utókezelésre, melyhez hatértékű krómvegyületeket vagy újabban hatértékű krómmentes oldatokat használhatnak.

A gyakorlatban a legnagyobb alkalmazási területe a cinkfoszfátnak van. E foszfátrétegeket főleg festés előtt alkalmazzák.

Egyes esetekben a foszfátozott alkatrészeket ponthegeszteni kell, amely művelet csak akkor végezhető el, ha a rétegtömeg nem haladja meg az 5 g/m2 értéket.

Átmeneti korrózióvédelem céljára, megfelelő olajokkal, zsírokkal, viaszokkaal utókezelve 5-10 g/m2 tömegű cinkfoszfát-réteget használnak, akárcsak a feszültségmentes hidegalakítás megkönnyítésére. E rétegek a nagy adszorpcióképességük következtében , az alapfémnél jóval több kenőanyagot képesek felvenni. A foszfátréteg megnöveli a szerszámok élettartamát, csökkenti a selejt mértékét, javítja a gyártmány felületi minőségét, csökkenti a súrlódást és ezáltal a felhasznált elektromos energiát, továbbá lehetővé teszi a falvastagság jelentős csökkenését és a húzás sebességének növelését. A rétegtömeget a mindenkori felhasználási célnak megfelelően kell megválasztani, de általában 1-10 g/m2 .

7.3. MANGÁNFOSZFÁTOZÁS

Egymáson csúszó gépalkatrészek felületkezelésére a mangánfoszfátozás a korszerű műszaki színvonal egyik jellemzője.

A mangán-foszfát-rétegek színe a sötétszürkétol az antracitfeketéig változhat, amelyet a réteg vastagságán és a szemcsefinomságon kívül az alapfém minősége is befolyásol. Jellegzetes, egyenletesen tömör kristályokból áll, amely csak szemcsefinomító aktiváló előkezeléssel alakul ki a felületen.

A cinkfoszfátozással szemben e foszfátozási folyamat főleg 90 oC feletti hőmérsékleten játszódik le.

A mangán-foszfát-rétegek alkalmazásának legfontosabb előnyei:

  • jobb bejáratási tulajdonságok,
  • jobb nyomásterhelhetőség,
  • kisebb kopás a bejáratás után.

A mangán-foszfát rétegek javasolt rétegtömegei – a csúszási tulajdonságok javítására munkadarab szoros illesztésekor, pl. hűtőgépkompresszorok dugattyúinál 1-3 g/m2, laza illesztéskor pl. fogaskerekek, tányérkerekek, hajtóművekben, ill. differenciálművekben pedig 5-20 g/m2.

A technológia ellenőrzése:

  • Oldatellenőrzés:
    • hatóanyagok, és hőmérséklet.
  • Bevonatellenőrzés:
    • rétegvastagság (rétegtömeg),
    • korrózióállóság vizsgálata.

Környezetvédelmi előírások:

  • elszívás és légtisztítás,
  • szennyvízkezelés (méregtelenítés: a hatértékű króm redukálása)
  • veszélyes hulladékok (tömény elektrolitok, iszapok stb.) kezelése

Munkavédelmi előírások:

egyéni védőfelszerelések használata,

elszívás.

Szabvány: MSZ 21461-1:1988

Vonatkozó szabványok:

MSZ 6578-1:1984

MSZ 6579-1:1985

MSZ-05-22.7224:1978

MSZ-05-22.7224:1978 1M (1987)

MSZ-05-22.7320:1992

Felhasználható szakirodalom:

Felületvédelmi kézikönyv Főszerkesztő: Orgován László Műszaki Könyvkiadó, Budapest, 1989

Kocsis László – Nagy Ádám: Felületvédelem szervetlen bevonatokkat Muszaki Könyvkiadó, Budapest, 1984

Általában kétféle módszer van a foszfátozásra. Az első a merítő eljárás, a másik pedig a szórásos eljárás.

A foszfátot legtöbbször pH mérővel szokták mérni, ugyanis ehhez nem kell manapság vegyésznek lenni. A gyártó megadja, hogy milyen két érték közé kell esnie az értéknek, és, hogy mivel, és hogyan lehet ezt növelni, illetve csökkenteni. Általában a szórásos rendszerbe nem kell, hogy erősen savas legyen a foszfát, mert a mechanikai rácsapódás is segíti a zsír/olaj réteg eltávolítását.  Jelenleg a modern vegyszerek nem esnek a veszélyes anyag kategóriába, de természetesen védőeszközök használata előírt. A vegyszerekkel nagyon óvatosan kell bánni, mert mindig csak a jelenlegi tudásunk szerint nem számít veszélyes anyagnak. Modernebb festőkben már használnak automata adagoló szivattyúkat, ami automatikusan adagolja a vegyszert a kádba, így elég egy kontrol mérést végezni naponta. A foszfátot minden esetben vízzel kell öblíteni. Erre a legjobb a hagyományos csapvíz. Egy hátránya, hogy vízcseppeket (vízkő) hagy a felületen, ami rontja a festék tapadásának minőségét.   Ezért az utolsó öblítés a jó minőség elérése érdekében minden esetben az ioncserélt/sótalanított vizes öblítés. Erre vannak alkalmas ipari víztisztító rendszerek. Ennek minőségét vezetőképesség mérő műszerrel lehet megmérni, mértékegysége a µS. Minél alacsonyabb ez az érték, annál kevesebb vízcsepp lesz a felületen (30 alatt megfelelő már- a víz nálunk 600). A foszfátozott felületre 24 órán belül (ha lehet azonnal) festeni kell, különben rozsdásodás lép fel!

Passziválás

A passziválás célja, hogy a már foszfátozott felületen létrehozzon egy olyan réteget, ami jobban segíti a festék tapadását. Hasonlóan itt is pH értékben vannak megadva a gyártók előírásai, illetve pontértékekben. Ezeket betartva egy nagyon jó minőségű festést tudunk garantálni vevőinknek.

Mit írjunk elő? Fontos paraméterek!

A festésnél nagyon lényeges a részletes leírás. Általában tervezők csak a színt írják elő, ami egy festőnek nem elegendő. Ez a festőnek kb. annyit jelent, mint a gépésznek, hogy acélból kell gyártani. A festékeket több szempontból csoportosíthatjuk.  Lássuk a fontos adatokat:

Elsődleges szempont természetesen a szín. Hazánkban legtöbbször a RAL színskála szerint választunk színt. A szín elé minden esetben odaírjuk, hogy melyik színskálán szerepel. (ált.: RAL, NCS, BS4800, Pantone).

Másodlagos szempont, hogy a festendő felület kültéri (UV álló), vagy beltéri igénybevételnek kel, hogy megfeleljen.  A fő különbség, hogy a beltéri festékek jobban ellenállnak a különböző vegyszereknek, de nem UV állók. Egy idő után elporladnak, ha természetes napfénynek vannak kitéve.

Harmadlagos szempont, hogy a festék struktúrája milyen legyen. Sima felületű, vagy pedig rücskös. A rücskösséget is több kategóriába sorolhatjuk. Általában a struktúr, vagy a finomstruktúr megnevezéseket használjuk. A struktúr festék képes eltüntetni leginkább a felületi hibákat (csiszolásnyom, hegesztés, stb.) . Általában, ha nem adunk meg felületre vonatkozó előírást a sima felületre gondolunk.

Negyedszerre adjuk meg a fényességet. Ez azt jelenti, hogy mennyire veri vissza a fényt a festék. Fényes felületnél szinte borotválkozni lehet, tükröződik a felület, míg matt festékeknél egyáltalán nem verődik vissza a fény. Ha nem adunk meg előírást a két átmenet közötti felületre gondolunk, ez pedig a selyemfényű. Az iparban ezt használják a legtöbbször, mert kevésbé látszik meg rajta a felületi hiba (pl. hegesztés, csiszolás nyom). A fényesség definíciójáról, méréséről külön pontban foglalkozunk.

Ez a négy szempont elengedhetetlen  ahhoz, hogy azt a felületet, színt kapjuk, amire gondoltunk a tervezésnél.

Lássuk a példánkat, ahol egy fekete színt írunk elő, egy hegesztett alkatrészen.

Nem megfelelő:

RAL9005

Megfelelő:

RAL9005 kültéri, struktúr, selyemfényű.

Még egy nagyon fontos dolog, amit érdemes rajzon feltüntetni: a festékmentes területek előírását.

Ha pl.: elektromos kontaktot kell létrehoznunk testelés szempontjából meg kell jelölnünk, hogy melyik rész legyen festékmentes. Menetek, vagy különböző ragasztások miatti felületek nem lehetnek festékesek. Van cég, aki nem kéri a festékmentességet a meneteken (mert drága). Ők a szerelési technológiájukat úgy alakították ki, hogy önmetsző csavarokat használnak.

A festés konvejorpályás sorral történik, ezért kampókra akasztva festjük az alkatrészeket. Természetesen ezeket furatokba akasztjuk bele, amik szintén festékmentesek lesznek. Ennek utólagos javítása is drágítja a terméket. Sok tervező tervez a darabra technológiai furatot, és nem kéri ezeknek az utólagos javítását, mert nem látható felületen van. Ha erre nincs mód általában érdemes megadni, hogy hova szabad akasztani, mert pl eltakarja a készterméknél egy alátét. A technológiai furatot mindig érdemes a festő céggel egyeztetni, mert, ha rossz helyre kerül (pl. nem tud kifolyni rajta vegyszer), az is drágíthatja az alkatrész felületkezelését.

Nagy cégek legtöbbször megadják a festék gyártóját, típusát, sorozatszámát. Ez azért biztonságos, és az egyik legjobb megoldás, mert, ha több helyről rendeljük ugyanazt az alkatrészt eltérő színűek lehetnek, ugyanis valószínűleg, a két festő nem ugyanattól a festékgyártól veszi a festékeket. A festékgyártók színei eltérhetnek egymástól (és el is térnek), mert minden színskála  tűrést is lehetővé tesz.

Miért lényeges az előkezelés?

Nagyon fontos, ha nem is írunk elő előkezelést. Lássuk, hogy mi is ez hétköznapi nyelven. Az előkezelés egy olyan réteg, ami tulajdonképpen a festés tapadás alapja. A festés minőségének az egyik legmeghatározóbb tényezője. Tudnunk kell, hogy mire tapad a festék. Általában a felületeken mindig találunk oxidációs réteget. Majdnem minden fém esetén az oxidációtól valamilyen kenőanyaggal próbálják megvédeni a felületet. Ezekre az anyagokra nem tapad a festék, valamilyen formában szükséges eltávolítani. Ez legtöbbször foszfáttal történik. A foszfát zsírtalanít (így is nevezik), és a modern előkezelő  anyagoknál egy védőréteget képez a fémre, ami segíti a festék tapadását. Erre e rétegre szoktak még úgynevezett passziváló réteget tervezni, ami szintén a festék tapadását segíti. Ezeket a rétegeket csak roncsolásos eljárással lehet megmérni (rácsvágás, sóköd teszt), amikkel részletesebben is foglalkozunk.

A fenti okok miatt lehetnek festőüzemek között komoly áreltérések, mert sok üzemben nem megfelelő az előkezelés. Ha egyáltalán nincs (pl.: benzines ruhával letörlik a zsírt) előkezelés a  festés ára olcsó, viszont a festék kb. fél év után eltávolodik a felülettől.

Az előkezelő fürdőinek minőségét pontszámmal, vezetőképességgel, és pH érték meghatározásával mérhetjük. Napi pH érték, savpontszám, lúgpontszám meghatározás elengedhetetlen a jó minőségű festéshez!

A porfestés története

A történet egészen az 1940-es évekig nyúlik vissza. Ebben az időszakban még jellemzően szórták a szerves polimereket, mígnem Dr. Erwin Gemmer egy német tudós kifejlesztette a fluidágyas szórás folyamatát, amit szabadalommal védett le 1953 májusában. Ezek a bevonatok jellemzően még nem elektrosztatikával festett bevonatok, hanem a munkadarabot hevítették fel, ezért tapadt rá a lebegtetett festék. Ezen technológiának az átlagos rétegvastagsága 150-500 μm, a funkcionális alkalmazás volt a legfontosabb, mint az elektromos szigetelés, vagy a korrózió, és kopásállóság. Általában a bevonatok alapanyagai a Neylon (csónak tartozékok), Polietilén, PVC (mosogatógép kosár), Poliester, valamint a hőre keményedő epoxik. Érdekesség még, hogy az epoxi bevonatot eredetileg a Bosch cég fejlesztette ki a megfelelő elektromos szigetelőanyagot keresve.

A magas rétegvastagság, és a nem túl nagy igények miatt lassan terjedt a bevonat az 1960-as években mind Európában, mind az USA-ban. Az elektrosztatikus szórást is ebben az időben találta ki a Sames nevű cég, ezzel is fejlesztve, könnyítve a már meglévő technológiát. Abban az időben ezt a bevonat technológiát pont ezért hívták Samesizing-nek..

Az 1966-73-as évek között fejlesztették ki a négy alapgyantát, ami ma is a meghatározó a porfestékek között. Epoxi, epoxi-poliester, poliester, poliuretan. A bevonat rendszer számára az igazi áttörést az 1970-es évek jelentették, igazából ekkor terjedt el, majd az 1980-as években a nagy ingatlan építési trend húzta fel magával. Ennek hatása ma is érezhető, ugyanis azóta a bevonat rendszereket folyamatosan fejlesztik. Ma már ipari hulladéknak számítanak a fel nem tapadt festékek. Kivonták belőlük a nehézfémeket, és már antibakteriális bevonatrendszert is lehet vásárolni a piacon. A lehetőségek a felületek és színek világába szinte végtelenek.

A porfestés történelme összefoglalva:

1940-es évek- itt már festettek hőre lágyuló festékekkel 1953-Dr. Erwin Gemmer feltalálja a fluidágyas alkalmazást és szabadalmaztatja. 1955- Kiadják a szabadalmat, és az eljárást az USA-ban is bevezetik.

1962-1964 – elektrosztatikus szórási folyamatot kifejleszti a Sames Pieter de Lange. 1950-1970- megszületik az extrudálás, mint festékpor gyártási technológia

1966-1970-Európa a dekoratív bevonatkora koncentrál, míg Amerika a magas   rétegképződést tartja előnyben. 1966-1973- Bevezetik a négy alapanyag gyantát. Érdekes, hogy az akril alapanyaggal már ebben az időben kísérleteztek, de csak napjainkban kezd elterjedni.

1970-es évek-a festékpor gyártása és használata elterjedt az egész világon. 1970- A gyors növekedési fázisban a por előállítása és felhasználása elkezdődik Európában. 1980-A gyors növekedési fázisban a por előállítása és felhasználása elkezdődik Észak-Amerikában és Japánban. 1985- től: majdnem minden évben új bevonat rendszerek kerülnek bemutatásra. A mai főbb szempontok a minőség növekedése a minél alacsonyabb rezsikötségek, a minél kevesebb hulladékok.